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EXECUTIVE SUMMARY

Cloud Native (CN) and Artificial Intelligence (AI) are the most critical technology trends today. Cloud 
Native1 technology provides a scalable and reliable platform for running applications. Given recent 
advances in AI and Machine Learning (ML), it is steadily rising as a dominant cloud workload. While 
CN technologies readily support certain aspects of AI/ML workloads, challenges and gaps remain, 
presenting opportunities to innovate and better accommodate.

This paper presents a brief overview of the state-of-the-art AI/ML techniques, followed by what CN 
technologies offer, covering the next challenges and gaps before discussing evolving solutions. The 
paper will equip engineers and business personnel with the knowledge to understand the changing 
Cloud Native Artificial Intelligence (CNAI) ecosystem and its opportunities.

We suggest a reading path depending on the reader’s background and interest. Exposure to 
microservices2 and CN technologies3 such as Kubernetes (K8s) is assumed. For those without experience 
in engineering AI systems, we recommend reading from start to finish. For those further along in their 
AI/ML adoption or delivery journey, per their user persona4 we suggest diving into the sections pertinent 
to the challenges they are grappling with or are interested in solving. We also share where society needs 
to invest in this context.
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INTRODUCTION TO CLOUD NATIVE 
ARTIFICIAL INTELLIGENCE (CNAI)

Before we get into CNAI, the coming together of Cloud Native and AI technologies, let us examine briefly 
the evolution of each. 

The Emergence of Cloud Native

Widely known and used since 2013,5 the term Cloud Native (CN) saw an increase in popularity with the 
rise of container technology from LXC6 to Docker7 to Kubernetes (K8s)8 Today, Cloud Native is more 
broadly an aspirational target of well-balanced systems built using the microservice design pattern that 
promotes modular design and development with a high degree of re-usability, which also lends itself to 
deployability, scalability, and resilience.

Kubernetes has evolved to become the de facto cloud operating system, with private, public, and hybrid 
cloud offerings. It implements a distributed orchestrator that handles network, storage, and compute 
resources of multiple types. Further, K8s offers an interface that enables DevOps10 best practices such 
as GitOps.11 Every Cloud Service Provider (CSP) has some flavor of Kubernetes as a service, facilitating 
access to infrastructure and a slew of support services to run various workloads, including AI/ML. 

The Cloud Native Computing Foundation defines9 Cloud Native as:

Cloud Native technologies empower organizations to build and run scalable applications in modern, 
dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, 
microservices, immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and observable. 
Combined with robust automation, they allow engineers to make high-impact changes frequently and 
predictably with minimal toil.

The Cloud Native Computing Foundation seeks to drive the adoption of this paradigm by fostering and 
sustaining an ecosystem of open source, vendor-neutral projects. We democratize state-of-the-art 
patterns to make these innovations accessible to everyone.

Cloud Native Artificial Intelligence is an evolving extension of Cloud Native.

Cloud Native Artificial Intelligence (CNAI) refers to approaches and patterns for building and deploying 
AI applications and workloads using the principles of Cloud Native. Enabling repeatable and scalable 
AI-focused workflows allows AI practitioners to focus on their domain.
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Evolution of Artificial Intelligence

Artificial Intelligence, first introduced as a term in 1956,12 is the ability of machines to simulate human 
intelligence. Over the decades, it has been used in applications such as speech recognition, machine 
translation, image processing, game playing, and even excelling as a Jeopardy player.13 But, AI has 
exploded in mindshare more recently thanks to innovations in artificial neural networks and deep 
learning, mainly applied to natural language understanding. There are two primary classifications of AI: 
discriminative and generative.

Discriminative AI seeks to learn decision 
boundaries or classifications, with the knowledge 
captured as a “model,” which is used to predict 
new data. For example, classifying email as spam 
or not, distinguishing between images of cats and 
dogs, and much more. Discriminative AI is typically 
used for tasks where the desired output is known 
(e.g., via Supervised Learning, a form of machine 
learning). AI excels in sequence prediction, for 
example, guessing with a high probability what we 
will type next by analyzing large bodies of existing 
text, including our personal writing styles.

Generative AI learns latent structures or 
representations within data. It enables synthesizing 
new data using these structures or representations, 
such as creating stories, music, and visual art 
from word prompts. Generative AI is used for 
tasks where the desired output is unknown, or the 
“correct” output is ill-defined. With Generative AI, 
AI has transcended into what humans consider 
creative, original, and sublime. Let us take a closer 
look at some of AI’s spectacular breakthroughs.

Convolutional Neural Networks14 (CNNs) were 
first developed in the 1980s but were only widely 
used in the early 2000s. In recent years, CNNs 
have become increasingly popular thanks to their 
ability to learn from large datasets of images and 
perform well on various image processing tasks, 
such as object detection, image classification, and 
segmentation.

Transformers were developed by researchers 
from the University of Toronto and Google in 2017. 
Transformers use a specialized mechanism called 
scaled dot-product attention, which imbues them 
with a memory-like structure.15 Transformer-based 
models are very effective for natural language 
processing tasks, such as answering questions, 
summarizing text, and translation. Consequently, 
they are vital in most Large Language Models 
(LLM). The most well-known LLM is GPT, the 
model that powers the popular ChatGPT service.16 
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LLMs are trained on massive datasets. They take sequences of prompts, that can be long, to generate 
context-sensitive responses in addition to being able to be fine-tuned for specialized domains with 
additional data, be it current affairs, medicine, law, or others. Novel techniques for fine-tuning, such as 
Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), have 
been developed to make LLMs even more compelling.

Research and innovation have enabled end-user interactions that are faster, more creative, and 
more accurate than ever before. Just as significant as the innovations in data science and software 
is the evolution of infrastructure to power model inference (the process of computing results from 
AI models) and model training (the process of building an AI model from data). With AI accelerator 
technology, AI practitioners can iterate faster to deliver higher-quality models in days and weeks versus 
months. Further, several traditional techniques employed by data scientists and statisticians are being 
re-evaluated to take advantage of the capabilities of CN systems.

Merging of Cloud Native and Artificial Intelligence

As mentioned in the previous section, AI is the broader concept that aims to create systems that can 
perform tasks akin to humans. Machine learning is a way to learn from and make informed predictions 
and decisions based on data. It can be thought of as yet another form of automation that involves using 
algorithms to learn and improve over time without explicit programming. Finally, Data Science, as a 
multidisciplinary field, melds techniques from statistics, mathematics, and computer science to enact 
a wide range of activities, from data analysis and interpretation to the application of machine learning 
algorithms. 

Thinking about it broadly, we could divide applications for AI, ML, and data science into two broad 
categories: namely Predictive AI and Generative AI. Predictive AI aims at predicting and analyzing 
existing patterns or outcomes (e.g., classification, clustering, regression, object detection,etc.). In 
contrast, generative AI aims at generating new and original content (e.g., LLMs, RAG17,etc.). As such, the 
algorithms and techniques underpinning predictive and generative AI can vary widely.

Figure 1 

Cloud Native AI
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Below is a sample set of areas where predictive and generative AI have distinct needs across 
computing, networking, and storage: 

Challenges/Need Generative AI Predictive AI

Computational 
Power

Extremely high. 

Requires specialized hardware.

Moderate to high. 

General-purpose hardware 
can suffice.

Data Volume 
and Diversity

Massive, diverse datasets 
for training.

Specific historical data 
for prediction.

Model Training 
and Fine-tuning

Complex, iterative training with 
specialized compute.

Moderate training.

Scalability and 
Elasticity

Highly scalable and elastic 
infrastructure (variable and intensive 
computational demands)

Scalability is necessary but lower 
elasticity demands. 

Batch processing or event-driven tasks. 

Storage and 
Throughput

High-performance storage with 
excellent throughput. Diverse data 
types.

Requires high throughput and low-
latency access to data.

Efficient storage with moderate 
throughput. It focuses more on data 
analysis and less on data generation; 
data is mostly structured.

Networking

High bandwidth and low latency 
for data transfer and model 
synchronization (e.g., during 
distributed training).

Consistent and reliable connectivity for 
data access.

In the coming sections, we will explore how to meet the needs that arise from either form, the challenges 
that come with it, and potential recommendations to employ when faced with such challenges.

What is Cloud Native Artificial Intelligence?

Cloud Native Artificial Intelligence allows the construction of practical systems to deploy, run, and scale 
AI workloads. CNAI solutions address challenges AI application scientists, developers, and deployers 
face in developing, deploying, running, scaling, and monitoring AI workloads on cloud infrastructure. 
By leveraging the underlying cloud infrastructure’s computing (e.g., CPUs and GPUs), network, and 
storage capabilities, as well as providing isolation and controlled sharing mechanisms, it accelerates AI 
application performance and reduces costs. 

Figure 2 (below) maps these enabling mechanisms between tooling and techniques.
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Figure 2 

Enabling Tools and Techniques18 

Running AI On Cloud Native Infrastructure

The value of Cloud Native for AI is highlighted by articles in the media published by cloud service 
providers and/or AI companies.19 20 The emergence of AI-related offerings by cloud providers and 
emerging start-ups in this space are crucial indicators of how Cloud Native principles can shape the 
systems necessary for the AI evolution. 

Cloud Native Artificial Intelligence is an evolving extension of Cloud Native.

Kubernetes is an orchestration platform that can be used to deploy and manage containers, which are 
lightweight, portable, self-contained software units. AI models can be packaged into containers and then 
deployed to K8s clusters. Containerization is especially crucial for AI models because different models 
typically require different and often conflicting dependencies. Isolating these dependencies within 
containers allows for far greater flexibility in model deployments. CN tooling allows for the efficient and 
scalable deployment of AI models, with ongoing efforts to tailor these for AI workloads specifically.

OPENAI  
Scaling Kubernetes to 7,500 nodes

HUGGING FACE 
Hugging Face Collaborates with Microsoft to 

launch Hugging Face Model Catalog on Azure

https://openai.com/research/scaling-kubernetes-to-7500-nodes
https://huggingface.co/blog/hugging-face-endpoints-on-azure
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The Kubernetes Scheduler21 continues to evolve,22 23 particularly to better integrate and support sharing 
Graphics Processing Units (GPUs) that have become highly popular in speeding AI workloads. Beyond 
supporting applications sharing a GPU and handling multi-tenancy, efforts are underway to support 
leveraging remote pools of resources outside of Kubernetes.

High-quality data is needed to train and test AI models to obtain superior inference. Cloud Native 
infrastructure can access data through various methods, such as data lakes and warehouses. Many cloud 
providers offer block, object, and file storage systems that are perfect for providing low-cost, scalable 
storage. For example, the size of models can run into gigabytes. During the training phase, pulling the 
model’s checkpoints each time can cause a severe load on networking and storage bandwidth. Treating 
models as containerized artifacts opens the door for hosting them in OCI24 registries and enables 
caching. It further allows applying software supply chain best practices to models such as artifact 
signing, validation, attestation, and data provenance. Additionally, containerizing models/artifacts 
facilitate bundling in WebAssembly (WASM) binaries. WASM is a platform-independent, efficient CN 
approach to inference.

Why Cloud Native Artificial Intelligence?

With its elastic, always-on infrastructure, the cloud has allowed enterprises, startups, and developers to 
prototype quickly, offer new services, scale solutions, and much more. It also does so cost-effectively 
through resource sharing. The average user no longer has to worry about ordering hardware or dealing 
with logistics like space, power, network connectivity, cooling, software licensing, and installation. AI has 
similar concerns – rapid prototyping, accessing storage, networking, and computing resources to tackle 
small and large-scale training and inference tasks. 

Using AI to Improve Cloud Native Systems

Whether packaged as observability tooling or leveraging LLM capabilities for natural language 
processing (NLP) of logs, AI-powered solutions/projects are entering the hands of operators and 
end-users to enhance their productivity and make their lives easier. One such open source Cloud 
Native Computing Foundation (CNCF) project is K8sGPT,25 which leverages the pattern recognition 
and language capabilities of LLM, such as Bedrock, Cohere, and others, to aid K8s operators in their 
daily work. More significantly though, the symbiosis of CN and AI opens up the ecosystem to new and 
unforeseen opportunities. For example, we expect a rise in less technical users able to operate and 
manage complex systems. 
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CHALLENGES FOR CLOUD NATIVE 
ARTIFICIAL INTELLIGENCE

It’s important to note that CNAI challenges will vary between the different personas.26 And, while Cloud 
Native’s flexible, scalable platform is a promising fit for AI workloads, AI’s scale and latency needs pose 
challenges and expose gaps in CN technologies while also presenting opportunities. We tease these out 
in the context of an end-to-end ML pipeline.27 also referred to in the literature as MLOps.28 Issues with the 
traditional trade-offs of time and space, parallelism, and synchronization all surface, exposing ease-of-
use gaps. To summarize, the ML Lifecycle looks as follows:

The data volumes involved in training, similarity search, and model size, particularly with LLMs, each 
drive memory and performance considerations. While CN handles access control and scheduling for 
CPUs, GPU allocation with adequate sharing is still evolving. The ML training phase is all about search, 
requiring tracking the performance of intermediate models to determine which to keep and how to tune 
model parameters further to obtain even greater accuracy. Security is more critical given the sensitivity of 
the handled data and the models’ intrinsic value. Observability is vital to detect model drift, usage load, 
and more. Let us dive a little deeper into the challenges in each pipeline stage. The reader is encouraged 
to consider additional challenges related to their domain and add to the conversation.29 

Figure 3 

ML Lifecycle

The typical ML pipeline is comprised of:

• Data Preparation (collection, cleaning/pre-processing, feature engineering)

• Model Training (model selection, architecture, hyperparameter tuning)

• CI/CD, Model Registry (storage)

• Model Serving

• Observability (usage load, model drift, security)

Data Preparation

As the first phase in an AI/ML pipeline, data preparation can present various challenges. These can be 
broadly grouped into three main categories: managing large data sizes, ensuring data synchronization 
during development and deployment, and adhering to data governance policies.
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Data Size

The demand for data to build better AI/ML models is increasing faster than Moore’s Law, doubling 
every 18 months.30 Whether it’s data management/handling, data processing, or data analysis, there 
is a rapid escalation in data demands for building AI/ML models. Therefore, distributed Cloud Native 
computing and efficient data movement and storage become essential to bridge the gap between these 
computational demands and hardware capabilities.

Data Synchronization

Data may need to be sourced from multiple disparate locations in different formats; the developer and 
production environments, more often than not, are different, and all this is in addition to handling the 
increased complexity arising from distributed computing, such as partitioning and synchronization. Let us 
take a closer look at the latter.

In data processing systems like Spark, the industry-standard interface, SQL, plays a crucial role in 
providing users with a familiar uniform experience, whether they are prototyping locally or running 
large workloads in a distributed manner. However, ML workloads don’t have an industry-standard 
interface. Consequently, data scientists develop their ML Python scripts with small datasets locally, and 
then distributed systems engineers rewrite these scripts for distributed execution. If the distributed ML 
workloads do not function as expected, data scientists might need to debug the issues using their local 
Python scripts. This process is inefficient and often ineffective. This is true despite the availability of 
better observability tools and the reproducibility afforded by container technology.

Potentially viable solutions exist for resolving this inconsistency between local development and 
production environments. The first is using an industry-standard interface to support the end-to-end 
ML lifecycle. For example, users can leverage APIs of native ML frameworks like PyTorch or TensorFlow 
to create training code and validate it by running it locally in a Python runtime. Then, users can easily 
reuse the same code and leverage the Python SDK from Kubeflow to run this code locally in a distributed 
fashion via Kind/Minikube or just as easily scale their training code by deploying it to a remote, large-
scale Kubernetes cluster using the same Python SDK. Another option is to use a general-purpose 
distributed computing engine such as Ray, whose computational abstractions also enable users to run 
the same Ray scripts seamlessly in local and production environments.

Data volume is a cross-cutting issue. It also manifests in the training stage.

Data Governance

Data governance is crucial to building trust and ensuring responsible AI development. One should 
consider three critical pillars regarding data governance. 

1.	 Privacy and Security: It is essential to navigate the complex landscape of data privacy regulations 
such as GDPR31 and CCPA32. Robust security measures should be implemented to safeguard sensitive 
data used in AI models. Encryption, access controls, and regular vulnerability assessments should be 
used to protect valuable information.

2.	 Ownership and Lineage: It is imperative to clearly define who owns and has access to the data 
throughout the AI lifecycle, from collection to use. Data lineage tracking tools should be utilized to 
understand how data flows through the system, ensuring transparency and accountability. Doing so 
helps to prevent unauthorized access and misuse of sensitive information.
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3.	 Mitigating Bias: AI models are only as good as the data they are trained on. Hence, it is essential to 
actively monitor and address potential biases in the data and algorithms. This includes using diverse 
datasets, employing fairness metrics, and continuously evaluating the model to ensure it delivers fair 
and ethical outcomes, including capturing its limitations. Model Cards33 are evolving to capture these.

Data privacy and security is a cross-cutting issue that requires consideration at every stage.

Model Training

Model training data volumes have risen exponentially, resulting in a need for distributed processing and 
accelerators to achieve even more parallelism. Further training is an iterative multi-step process, which 
makes scaling a complex multi-component coordinated task. We review these aspects in greater detail in 
this section.

Rising Processing Demands

LLMs are rapidly pushing the boundaries to meet the growing AI/ML training and inference computing 
demands, and accelerators are becoming popular. These range from GPUs from multiple vendors 
with different capabilities to Google’s tensor processing units (TPUs), Intel’s Gaudi, and even field-
programmable gate arrays (FPGAs). These varied compute resources need virtualization support, 
drivers, the ability to configure and share them, and CN scheduler enhancements. Further, these 
accelerators’ limited availability and cost have prompted the exploration of multi-cloud resource banding, 
and even sky34 computing.

Using CN technology for AI can be complex regarding GPU virtualization and dynamic allocation. 
Technologies, such as vGPUs, MIG, MPS (see glossary), and Dynamic Resource Allocation (DRA),35 

enable multiple users to share a single GPU while providing isolation and sharing between containers 
in a pod. They can increase GPU utilization, which in turn reduces costs, in addition to allowing multiple 
workloads to benefit simultaneously from them. However, implementation requires careful orchestration 
and management, especially when allocating and deallocating resources dynamically. Close collaboration 
between the AI and CN engineering teams is necessary to ensure smooth and efficient integration.

Cost Efficiency

The elasticity and scalability inherent in Cloud Native environments allow organizations to provision 
and scale resources dynamically based on fluctuating demands. This aspect also applies to AI tasks. 
However, resource proper sizing and reactive scheduling to meet varying workload demands are even 
more compelling in the context of accelerators such as GPUs, which are expensive and limited in supply. 
It drives the need to be able to fractionalize GPUs to utilize them better. 

Reducing the carbon footprint during model serving can be achieved using an autoscaling serving 
framework, which dynamically adjusts resources based on demand.36 KServe,37 an LF AI&Data 
Foundation project, provides such functionality. Sustainability 38 can be significantly improved by various 
means, such as using smaller, more specialized models, using a mixture of experts, and techniques such 
as compression and distillation. Distributing ML serving into geographical regions powered by renewable 
or cleaner energy sources can significantly reduce carbon footprint.39

Responsible development of ML models can include metadata on carbon footprints to aid in tracking and 
reporting the impact of model emissions on the environment. Additional tooling, such as mlco240 and 
codecarbon41 exists, with limitations, to help predict the carbon footprint of new neural networks before 
physical training.
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Scalability

AI/ML workflows are complex and characterized by diverse components that run in a distributed 
environment. In the context of training, this complexity is particularly exacerbated by the data 
volumes being handled and the need to support multiple rounds of training until model convergence. 
Coordinating the scaling of various microservices, with each encapsulating specific AI functionalities, 
demands intricate orchestration to ensure seamless communication and synchronization. Furthermore, 
the heterogeneity of AI models and frameworks complicates standardization, making creating generic 
scaling solutions applicable across various applications challenging.

Orchestration/Scheduling

As alluded to earlier, Cloud Native tools and projects simplify the orchestration and scheduling of AI 
workloads by leveraging the inherent features of containerization, microservices, and scalable cloud 
infrastructure. Complex AI workflows can be decomposed into modular components, making it easier to 
manage and scale specific functions independently.

However, as mentioned earlier, GPUs are a precious and in-demand resource, and the ability to more 
efficiently manage their sharing and scheduling for GPU-based AI workloads is critical to the success of 
AI development teams. Well-tested tools for addressing advanced scheduling needs like bin packing, 
placement, resource contention, and pre-emption will be essential and foundational for cloud native AI to 
thrive. Better scheduling support is evolving in Kubernetes through efforts such as Yunikorn,42 Volcano,43 

and Kueue,44 the latter two addressing batch scheduling, which is particularly valuable for efficient AI/ML 
training. Training jobs benefit from gang (or group) scheduling,45 as the container replicas belonging to 
the job need an all-or-nothing placement policy to function correctly, and those jobs are not easily scaled 
up or down. Gang scheduling support is an area of opportunity.

Custom Dependencies

AI applications often rely on specific frameworks and versions of libraries, and these dependencies may 
not be readily available or compatible with standard container images.

Since many AI workloads benefit from GPU acceleration, having the necessary GPU drivers and libraries 
to support running workloads on GPUs can be challenging, especially when dealing with different 
vendors and GPU architectures. For example, when running distributed training on NVIDIA devices, 
one can use NVIDIA Collective Communications Library (NCCL), to take advantage of optimized multi-
GPU and multi-node communication primitives. Different versions of the library might lead to different 
performance. Reproducible builds, a good build hygiene practice for all software, require using 
versioned dependencies to avoid runtime incompatibilities and performance surprises.

Model Serving

Model serving differs chiefly from data processing and training because of load variability and often 
latency requirements. Further, there are considerations of service resiliency in addition to sharing 
infrastructure to reduce costs. Also, AI model characteristics are distinct, varying significantly across 
classical ML, Deep Learning (DL), Generative AI (GAI) LLMs, and, more recently, the multi-modal 
approaches (e.g., text to video). Different workloads necessitate varied support from ML infrastructure. 
For example, before the emergence of LLMs, model serving typically required only a single GPU. Some 
users opted for CPU-based inference if the workloads were not latency-sensitive. However, when serving 
LLMs, the performance bottleneck shifts from being compute-bound to memory-bound due to the 
autoregressive nature of the Transformer decoder.46
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 This section explores how CN supports these facets and what challenges remain. 

Microservice Architecture and Developer Experience

CN is based on microservice architecture. However, this may pose a challenge for AI, dealing with 
each stage in the ML pipeline as a separate microservice. Many components may make maintaining 
and synchronizing their outputs and hand-offs challenging. Even if users only want to play with these 
solutions on their laptops, they might still need to create tens of Pods. The complexity makes the 
infrastructure lack the flexibility to adapt to versatile ML workloads.

Second, the microservice-based ML infrastructure leads to a fragmented user experience. For example, 
in their daily workflows, AI Practitioners may need to build container images, write custom resource 
YAML files, use workflow orchestrators, and so on instead of focusing solely on their ML Python scripts. 
This complexity also manifests as a steeper learning curve, requiring users to learn many systems outside 
their expertise and/or interest.

Third, the cost increases significantly when integrating each stage from different systems in the ML 
model lifecycle. The Samsara engineering blog47 mentions that its ML production pipelines were 
hosted across several microservices with separate data processing, model inference, and business 
logic steps. Split infrastructure involved complex management to synchronize resources, slowing the 
speed of development and model releases. Then, using Ray, Samsara built a unified ML platform that 
enhanced their production ML pipeline performance, delivering nearly a 50% reduction in total yearly ML 
inferencing costs for the company, stemming chiefly from resource sharing and eliminating serialization 
and deserialization across stages.

These issues highlight the need for a unified ML infrastructure based on a general-purpose 
distributed computation engine like Ray. Ray can supplement the existing Cloud Native ecosystem, 
focusing on computation, allowing the Cloud Native ecosystem to concentrate on deployment and 
delivery. The Ray/KubeRay community has collaborated extensively with multiple Cloud Native 
communities, such as Kubeflow,48 Kueue,49 Google GKE,50 and OpenShift.51 

Model Placement

Users ideally like to deploy multiple, possibly unrelated, models for inference in a single cluster while 
also seeking to share the inference framework to reduce costs and obtain model isolation. Further, for 
resiliency, they want replicas in different failure zones. Kubernetes provides affinity and anti-affinity 
mechanisms to schedule workloads in different topology domains (e.g., zone, node),52 but usability 
improvements can help users take advantage of these features.

Resource Allocation

Model serving requires handling, chiefly, the model parameters. The number of parameters and the 
representation size indicate the memory needed. Unless dealing with a trillion parameter LLM, these 
typically require only a portion of a GPU. This highlights the need to be able to fractionalize expensive 
accelerators like GPUs. The DRA project,53 which is still in alpha, seeks to make GPU scheduling more 
flexible.

Another consideration is response latency, which depends significantly on the use case. For instance, 
the response latency desired to detect objects on the road in an autonomous driving context is several 
orders lower than tolerable while creating an image or writing a poem. Additional serving instances may 
need to be launched for low-latency applications under high-load conditions. These could land on a CPU, 
GPU, or other computing resource if the desired latency can be honored. Support for such cascading 
opportunistic scheduling on available resources is still evolving in Kubernetes.

https://www.samsara.com/blog/building-a-modern-machine-learning-platform-with-ray
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Further, event-driven hosting is ideal for not wasting resources and keeping costs down. The Kubernetes 
Event Driven Autoscaling (KEDA)54 project is well-suited here, provided the model loading latency is 
tolerable to still deliver on the end-to-end service latency. An opportunity here is to provide better 
support for model sharing by delivering models in an Open Container Initiative55 (OCI) format, an 
immutable file system that lends itself to sharing. Another solution is to use AI for CN, in particular, to 
predict use and proactively float or shut down serving instances to handle the expected load.

User Experience

The hallmark of CN, aka containers, allows portability and reproducibility, while Kubernetes’ APIs and 
operators, like Kubeflow, simplify the deployment of the AI workloads, making them “write once and run 
(virtually) anywhere’’ in an easily scalable fashion. Once users transition from traditional batch systems 
on bare metal or virtualized environments to containers and Kubernetes, they appreciate the benefits of 
cloud technologies despite their initial adoption challenges. The learning curve, however, can be steep.

Let’s consider AI training workloads. Configuring the runtime environment can be time-consuming, 
particularly when highly customizable libraries are used. The user has the option to use default settings 
for a plethora of environment variables, but these may yield inferior performance. Once optimized on 
a given Kubernetes platform for a particular training workload, there are no guarantees it will perform 
likewise on another platform or training task or container bundle with different libraries included. This 
affects workload portability and ease of use.

The previous paragraph looked at just one stage in an AI pipeline, typically multi-stage, spanning data 
preparation, training, tuning, serving, and fine-tuning. How can one provide a seamless user experience 
for AI practitioners who aren’t necessarily savvy with systems or cloud concepts and provide them with a 
streamlined product experience that eliminates friction in AI development? Giving AI practitioners user-
friendly and well known SDKs written in Python that abstract away the complex details of Kubernetes 
can help increase the adoption of Cloud Native AI tools. Users would like to build ML models using 
PyTorch and TensorFlow and then quickly and easily deploy them to Kubernetes infrastructure by using 
simple Python SDKs without worrying about details such as packaging, building Docker images, creating 
Kubernetes custom resources (e.g., PyTorchJob, TFJob), and scaling those models using complex cloud 
native tools. A strong product development focus will be required to invent an open source product 
experience for the MLOps lifecycle, which is much more user friendly.

Integrating tools like JupyterLab, which contains space for an IDE-like experience with useful APIs that 
may exist in AI/ML tools available today (ex., Kubeflow Katib API), would allow ML practitioners to more 
quickly iterate on their AI development with fewer context switches across multiple user interfaces. 
JupyterLab’s extensible nature gives ML practitioners a workspace to build, deploy, and monitor AI/
ML workloads within a familiar tool without learning new tools and interfaces. It is even possible to use 
JupyterLab to schedule workflows of code developed in individual AI/ML Notebooks using GUI workflow 
building tools like Elyra56 coupled with Kubeflow Pipelines.

Big Data, inside and outside the enterprise, is a mainstay of AI. It is essential to consider how to bridge 
the gap between the Big Data and ML ecosystems. For example, modern Generative AI models require 
large amounts of data for training. Still, the tools for loading large amounts of data from formats like 
Iceberg into training frameworks like PyTorch require enhancement, with tools like TorchArrow57 and 
PyIceberg58 demonstrating early promise. Tools used for large-scale data preparation, like Spark, 
aren’t well connected to the tools in the ML ecosystem. Extra overhead is required to prepare data, 
build features, store features to disk, and then read those features back into memory for use in training 
workloads. Solutions like RayData59 or a data caching microservice built upon Arrow Flight RPC may 
significantly improve the Input/Output overhead involved with the first phases of training workloads.
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ML tools are complex, and users typically need help to deploy them on Kubernetes. It is nontrivial 
to identify and deploy appropriate drivers for GPUs and make them compatible with a user’s AI/ML 
workloads. The upgrade path for existing ML workloads should be simplified and improved, similar to 
other Kubernetes control plane components. Users should get clear guidelines on how to keep their AI 
workloads resilient to Kubernetes upgrades and cluster downtime.

Another aspect that affects the ease of use is multi-tenancy, using quotas and namespaces. Non-admin 
users need help to figure out the system resources available to them. Typically, administrators provide 
tools (e.g., Grafana dashboards) for observability; when these are lacking, non-expert/non-admin users 
are left in the lurch.

Finally, debugging is challenging, made more so in distributed environments and even more so when 
the processing pipeline comprises multiple complex services. Hardware and software failure might be 
more or less explicit and easy to identify to a cloud user, but an AI practitioner may need help to see the 
complete picture of failure. For example, NCCL termination errors can be vague with any of a multitude 
of possible causes, each requiring investigation. The user may need to parlay the error message to an 
administrator for further assistance.

Cross-Cutting Concerns

In the previous sections, we addressed challenges specific to a stage in the AI pipeline. But others are 
common to all stages and all software applications, spanning reference implementations, observability, 
security, and more. For instance, right-sizing resources are valid for processing data, training, or serving. 
It has resource utilization, cost, and sustainability ramifications. Let us dive a little deeper into them. 

Reference Implementation

Neither cloud nor AI are easy studies, and getting them to work together after making choices from 
many tools and projects is non-trivial. Adoption needs to be improved by requiring a reference 
implementation that meets a majority of simple use cases. Kind for Kubernetes did wonders to help 
developers get started on their laptops. Jupyter Notebook did likewise for the budding AI/ML developer. 
We need something similar for an AI/ML pipeline that runs in the cloud. 

Right-sizing Resource Provisioning

AI/ML workloads are resource intensive, especially with LLMs with their billions or trillions of parameters.
As discussed earlier, accelerators like GPUs are expensive and in short supply, and it is essential to use 
the proper size allocation to save resources and control costs. We need to be able to not only timeslice 
GPUs but also slice or partition them into fractional sections and allocate them judiciously as required by 
different workloads. In conjunction with the above back-end effort, there is a need for front-end support 
to request GPU sub-units and configure them while launching workloads.

To address this need, Kubernetes introduced a new API, Dynamic Resource Allocation (DRA),60 61 as 
alpha in v1.26. The API provides more flexibility to manage specialized hardware resources, in particular:

•	 Network-attached resources

•	 Arbitrary parameters for resource requests

•	 Arbitrary, resource-specific setup and cleanup actions

•	 Custom matching resource requests with available resources, including handling optional requests.
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•	 The DRA API offers several advantages compared to existing approaches:

	 -	 Custom hardware can be added by developing and deploying DRA drivers without needing to  
		  modify the core Kubernetes codebase

	 - 	 Vendors can define resource parameters

	 -	 Resources can be shared between containers and pods

Cost Control

AI/ML can quickly become a budget black hole. Automating resource allocation and scaling processes to 
optimize AI cloud costs is essential. Microservices can be scaled individually as needed. Further, it lends 
itself well to using the Kubernetes auto-scaling feature that will further help right sizing the number of 
active instances and thus the infrastructure costs. Last, Spot Instances can be leveraged with policies 
that capture balancing risk with meeting Service Level Agreements (SLAs). 

Observability

Observability is valuable across the AI/ML pipeline. CN offers tools like OpenTelemetry62 and 
Prometheus63 that can monitor load, number of accesses, response latency, and more. It is vital to 
monitor model performance and health in production environments. It is crucial to keep track of model 
drift to ensure the accuracy and reliability of your AI system. For example, facial recognition systems 
may experience degradation as more people wore masks during the COVID-19 pandemic. Similarly, a 
housing price predictor model may diverge from reality due to external factors such as natural disasters 
or changes in interest rates. Therefore, monitoring your AI models continuously is essential to detect any 
performance issues and make necessary adjustments.

Infrastructure monitoring is essential, especially with long running workloads. As AI training workloads 
run, anomalies in GPUs and networking may happen at times. Examples are errors in the GPU memory 
or unreachable nodes, which may result in the job crashing.

However, issues that are not immediately identifiable may arise: for instance, training performance 
may start to degrade without any apparent hardware fault being reported. In these cases, only deep 
diagnostics could identify the issues. Current metrics do not expose results from deep diagnostics. 
Therefore, providing tools to detect, avoid, and handle infrastructure issues before, during, and after 
running AI training jobs becomes crucial.

Disaster Recovery and Business Continuity

All production services must be resilient, with backups. AI services are no different. Failed or slow to 
respond services can cause reputational damage and loss of revenue. Developing a comprehensive 
disaster recovery plan is essential, which may include data backup, running instances in multiple 
availability zones, and running multiple instances. Policies can help with these. 

Security and Compliance Audits

All outward facing services, particularly Model Serving instances, need firewall protection, access control, 
and more. And like any other service, your AI/ML workloads must follow security best practices. These 
include penetration testing, vulnerability scanning, and compliance checks of the workload domain, such 
as health care, finance, etc.
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Tools like Grype64 and Trivy65 can scan containerized workloads for vulnerabilities. Kyverno66 and policy 
enforcement services can ensure containerized workloads are running at the lowest privilege necessary 
with minor capabilities needed.

An additional layer of security is possible using confidential computing67 or Trusted Execution 
Environments (TEE). These hardware-supported environments provide encrypted memory, data integrity 
protection, and testability. TEEs protect the data and workload from other infrastructure users while in 
use. AMD, Intel, NVIDIA, and IBM have TEE offerings, and they are becoming available in public clouds. 
Protecting sensitive data such as health care and financial information and ML models are prime use 
cases.

Sustainability

AI/ML model training has always been resource intensive, especially with Large Language Models 
like GPT-3. Training emissions are comparable to multiple transcontinental flights, while inference 
emissions add up due to high query volumes.68 The industry’s trend towards oversized models for 
market dominance leads to inefficiencies, contributing to energy and resource consumption.69 More 
transparency and standardization in reporting the environmental impacts of a model are challenges. 

Recently, there have been efforts to increase transparency with LLama,70 while some insights are 
becoming available concerning water usage for cooling servers running LLMs, like ChatGPT. ChatGPT’s 
carbon footprint is significant, given its millions of users.

The drive for sustainability presents opportunities for innovation. DeepMind’s BCOOLER and 
smaller, more efficient models like DistilBERT and FlexGen show promise in reducing AI/ML energy 
consumption.71 Adopting best practices like efficient ML architectures, optimized processors, and locating 
cloud computing infrastructure in energy-efficient locations can curb the carbon footprint of ML training. 
Google has been successful in controlling the energy consumption of its machine learning systems.

Education for Kids

Today, technology education mainly focuses on traditional programming languages without AI or 
computer assistance. Schools typically don’t use modern IDEs that support refactoring, templating, or 
API assistance and will have students code on a contained website for ease of setup. They also don’t 
teach the use of AI coding assistance technologies like Github’s Copilot, even though this will become the 
standard mode of development in the future. Most students aren’t even aware this technology exists.

Schools actively dissuade students from using AI technologies like ChatGPT and Copilot due to concerns 
about cheating. This prevents students from learning how to use AI technologies to augment their work 
and excel effectively. Because schools paint AI technology in a negative light, studious students get 
scared off from using it, and the students looking for a way to avoid doing their homework are more 
likely to use AI.

The challenges mentioned above provided us insight into areas of concern when it comes to 
implementing CNAI systems. Fortunately, CN tooling is facing many challenges head-on. We next 
consider opportunities that stem from these challenges.
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PATH FORWARD WITH CLOUD NATIVE 
ARTIFICIAL INTELLIGENCE

This section provides a forward looking approach to taking the initiative to implement CNAI. We begin 
with recommendations (or actions), then enumerate existing yet evolving solutions (i.e., CNAI software), 
and finally consider opportunities for further development.

Recommendations

Flexibility

Sometimes, the variety of options regarding AI can become overwhelming. Fortunately, thanks to many, 
popular tools and techniques remain valid in this new world. From REST interfaces for interface to cloud 
based resources and services, CN technologies work well today and will continue to work well as new 
offerings evolve.

Sustainability

Improving the accountability of AI workload environmental impact is crucial for ecological sustainability, 
particularly in the cloud native landscape. This can be achieved by supporting projects, methodologies, 
and taxonomy that help clarify, classify, and catalyze AI workload on ecological sustainability. 
Additionally, integrating cloud native technologies to optimize AI workload scheduling, autoscaling, and 
tuning is necessary. Furthermore, advocating for adopting standardized methodologies in environmental 
impact assessments is vital. It is also important to promote the development and use of energy-efficient 
AI models and foster transparency in model development and usage, primarily through cloud native 
stacks such as Kubeflow. Finally, emphasizing the importance of purposeful and efficient AI usage will 
help minimize unnecessary computational loads.

Custom Platform Dependencies

We recommend ensuring the Cloud Native environment has the required GPU drivers and supports GPU 
acceleration for AI workloads. This is crucial as AI applications often depend on specific frameworks and 
library versions that may not be easily accessible or compatible with standard container images. This will 
help with the challenge of having various vendors and GPU architectures.

Reference Implementation

Given the number and complexity of the tools involved in AI development, it may be advisable to 
consider the value of a Cloud Native, OpenTofu-based reference implementation of a user-friendly 
combination of various tools that can provide a product-like experience for any team around the world 
to get started doing AI/ML in the Cloud quickly. Combining the best available open source tools for data 
preparation, feature store, training, tuning, model registry, and serving can help teams get started doing 
machine learning quickly and scale up their work efficiently using the power of the Cloud. Consider the 
value/power of combining a sophisticated set of technologies into a functional and scalable distribution 
to serve such a purpose. (e.g. JupyterLab, Kubeflow, PyTorch, Spark/Ray/Trino, Iceberg, Feast, MLFlow, 
Yunikorn, EKS/GKE, S3/GCS, etc.). Such a reference implementation may be extremely valuable for 
advancing open and responsible AIML development powered by Cloud-based technologies.
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Industry Acceptance of Terminology

As AI becomes ubiquitous, it becomes increasingly complex in some dimensions but simpler in others. 
For example, terminology evolves, providing businesses with more effortless conversations about AI 
(e.g., terms such as “repurpose” to reuse existing content). This also applies to more technical terms, 
such as RAG, Reason, and Refinement.

Evolving Solutions for AI/ML

The following are just a few examples of specific tools or technologies that have become options to 
enable AI, including CNAI.

Orchestration - Kubeflow

Kubeflow is an example of a CNAI tool supporting ML Operations (MLOps). Using technologies such 
as Kubernetes, stateless architectures, and distributed systems, Kubeflow helps AI/ML communities 
adopt Cloud Native tools more efficiently. The successful adoption of Kubeflow highlights the successful 
integration of Cloud Native technologies for AI/ML/DL. Kubeflow has been highly progressive in its 
ability to apply machine learning concepts to elastic substrates provided by Kubernetes, with many 
other projects following suit.72 Kubeflow follows Kubernetes best practices and applies them to the AI/
ML space, such as declarative APIs, composability, and portability. Kubeflow implements individual 
microservices for every stage of the ML lifecycle. For example, Kubeflow Training Operator is used 
for distributed training, Katib is used for hyperparameter tuning fine-tuning, and Kubeflow KServe is 
used for model serving. That allows users to integrate individual Kubeflow components into their ML 
infrastructure or use Kubeflow as an end-to-end ML platform.

Context - Vector Databases

LLMs are trained with vast volumes of, typically, publicly available data at a point in time. We interact 
with them via prompts. But to make the responses more valuable without the user having to enter longer 
or multiple prompts and possibly retrieve more domain-specific responses, it is helpful to “enrich” 
the prompt. This is where vector databases come in. They are giant, indexed stores of vectors, a 
mathematical representation of data in numerical form. Embeddings are a specific vector representation 
of each additional piece of data, often proprietary, domain specific, or newer, that aims to capture 
relationships and similarities (context) between the data they represent. The user-provided LLM prompt 
is transformed using the same embedding used by the vector database, and the resulting vector is then 
used to find similar vectors in the database. They are then merged to provide additional context before 
feeding into the LLM to generate a response. Multi-modal GenAI systems would handle prompts that 
might be text, images, audio, or other, with the embedding ability to handle diverse input.

Vector databases can be purpose-built or traditional databases with extensions to handle vectors more 
specifically. Instances may vary in their choice of indexing scheme, distance metric used to compute 
similarity, and whether and what data compression technique they employ. Some offerings include 
Redis,73 Milvus,74 Faiss,75 and Weaviate.76

Observability - OpenLLMetry

OpenLLMetry77 is a project that builds on top of OpenTelemetry78 to enable thorough and vendor-neutral 
instrumentation for LLM Observability. Because Generative AI is not debuggable in the traditional sense 
(i.e., you can’t “just step through the code”), developers must turn towards Observability tools and 
practices to improve their use of Generative AI over time. This data is also often the source of evaluations 
and fine-tuning workflows.
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Opportunities

CNCF Project Landscape

Several Linux Foundation (LF) groups, including CNCF, LF AI79 & Data, along with partners such as the 
AI Alliance,80 and more, provide a hub for AI projects that both AI and cloud engineers can use. Existing 
tools, such as the Cloud Native Landscape,81 give a bird’s eye view into the CN ecosystem. The following 
figure lists established and evolving projects grouped by their functional area.

Figure 4 

ML Tool to Task Mind Map
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CNAI for Kids and Students

Kids already use AI assistive technologies like ChatGPT daily and have no idea how they work. The 
underpinnings of modern AI, like discriminative and generative AI algorithms, are a black box that kids 
and even technology savvy parents don’t understand, so it is difficult to take an interest in it. Rather 
than just taking LLMs like ChatGPT for granted, students’ education should include the basics of neural 
networks and machine learning algorithms to explain how AI technologies work and how to use them 
better in their future careers.

The Cloud Native community and successful programs like CNCF Kids Day82 at KubeCon provide 
educational opportunities on Cloud Native and AI technologies. Introducing kids to AI technologies early 
will also prevent the diversity, equity, and inclusion issues plaguing computer science. AI is an equalizing 
technology because people of every race, sexual orientation, and socioeconomic status can experience 
AI/ML daily and help improve this technology with the proper training and education.

The AI/ML revolution is analogous to the dot-com era, where web technology became ubiquitous, 
and even ordinary workers embraced this technology to improve their business. As AI/ML technology 
becomes ubiquitous in society, we must ensure that students keep pace with the advances in AI and 
Cloud Native technologies.

Participation

As AI grows, more opportunities for education and involvement happen. There is room for AI specialists 
(e.g., Ph.D. in ML to Data Scientists) and AI generalists (e.g., operators and end-users). Educational 
programs such as MOOCs83 and certifications have emerged to focus on AI tooling and techniques on all 
fronts. Professional societies (e.g., ACM84 and IEEE85) and meetups provide chances to meet in person 
to learn and discuss challenges. Industry groups such as the CNCF,86 along with Linux Foundation AI, AI 
Alliance,87 and others, provide the ability to coordinate projects and protocols at scale.

Trust and Safety / Safety By Design

As we build AI and Cloud Native technology, there is a significant risk of unintended consequences and 
negative impacts. These can be due to unintentional design issues causing adverse impacts on vulnerable 
groups, for example, recommending algorithms that inadvertently promote hate-based, violent, 
extremist material. They can also be due to individuals or groups’ malicious use of systems and/or tools 
to harm deliberately, such as using Generative AI tools to create misinformation and disinformation 
campaigns or individuals purposely fine-turning LLMs to produce child sexual abuse material.88 

AI and Cloud Native technology are also at the core of the tooling used by Trust and Safety: “The field 
and practices employed by digital services to manage content and conduct scans for risks to users and 
others, mitigate online or other forms of technology-facilitated abuse, advocate for user rights, and 
protect brand safety.”89 Systems have been built to deliver every part of the Trust and Safety cycle90 
including identifying and assessing potentially violent behavior, triaging and prioritizing cases, making 
and recording enforcement decisions, selecting and applying interventions, and gathering threat 
intelligence. Apart from being central to the safety and health of the internet, these systems can have 
significant negative impacts if designed without due consideration.

Responsible technology is about reducing harm from technology, diversifying the tech pipeline, and 
ensuring that technology aligns with the public interest. It explores and actively considers tech’s values, 
unintended consequences, and negative impacts to manage and mitigate risk and harm. As we build AI 
and Cloud Native technology, we must consider these potential ethical and human rights impacts, 
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optimizing freedom of expression, the right to privacy, the right to life, liberty, and the security of 
person,91 and other fundamental universal human rights.

The World Economic Forum states: “Safety by Design puts user safety and rights at the center of the 
design and development of online products and services”.92 This proactive and preventative approach 
focuses on embedding safety into the culture and leadership of an organization. It emphasizes 
accountability and aims to foster more positive, civil, and rewarding online experiences for everyone.

There is a growing field of experts to help with these development best practices, such as the Global 
Internet Forum to Counter Terrorism (GIFCT),93 The Tech Coalition,94 and the Internet Society. 95 All 
Tech is Human curated list of experts in this sector and can provide links to critical resources.96 The AI 
Alliance 97 initiative (IBM, Meta, and 50+ institutions) focuses on advancing open innovation and science 
in AI to propose alternatives to closed AI systems and advance the field of responsible AI (ethics, trust, 
safety). OpenAI,98 the organization behind ChatGPT, was initially founded as a non-profit focusing on 
guaranteeing safety and fairness in AI.

The Emergence of a New Engineering Discipline

In the last two decades, we have seen how the tech industry has been creating and changing engineering 
job roles rapidly, depending on their responsibilities. We have witnessed the rise of roles such as 
DevOps Engineer, SRE Engineer, and Infrastructure Engineer. We foresee the MLDevOps or AI engineer 
becoming the glue between Data Science, Infrastructure and Development in the next few months or 
years. It’s important to know that this industry area is developing, and the role titles can fluctuate; only 
time will tell. Different terms may also become a reality. In the future, that role will need to focus more on 
AI tooling, infra, and deploying AI chains and agents.
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ARTIFICIAL INTELLIGENCE FOR 
CLOUD NATIVE

This paper has focused mainly on Cloud Native supporting AI development and usage. But AI can 
enhance Cloud Native in many ways – from anticipating load and better resource scheduling, particularly 
with multiple optimization criteria involved, such as power conservation, increased resource utilization, 
reducing latency, honoring priorities, enhancing security, understanding logs and traces, and much 
more.

Natural Language Interface for Cluster Control

At Cloud Native AI + HPC Day in Chicago in 202399 Kubernetes Controllers with a natural language 
interface were demonstrated to tackle cluster-related tasks. It used an LLM in that back-end that 
comprehended user requests and translated them to Kubernetes API calls. It further supported 
launching chaos tests to ascertain service resiliency, scan for CVEs, and more. It is a precursor to more 
intuitive orchestration and management of Kubernetes clusters and, in time, lowers the learning curve for 
administrators and site reliability engineers.

Security

Machine learning can analyze massive datasets to rapidly identify patterns and predict potential threats 
or weaknesses in the system. Integrating AI in red teaming100 accelerates identifying security gaps and 
allows organizations to strengthen their defenses against emerging cyber threats. ML models that detect 
anomalous network behavior can just as easily be used in clusters to protect workloads or across a fleet 
of clusters for edge deployments.

Smarter Orchestration/Scheduling 

AI can analyze historical cluster usage over the day/week/month to identify workload patterns and 
resource availability, to understand when and how to deploy workloads, whether to scale them 
horizontally or vertically, when to consolidate workloads on a few nodes to put others into quiescence for 
power savings or even drop them from the cluster to reduce costs.

ML-driven models can optimize task sequencing, automate decision-making processes, and enhance 
the overall efficiency of workload management. A natural language interface facilitates the whole 
orchestration and scheduling process. These enhancements would make it easier for organizations to 
manage and schedule complex workflows in dynamic cloud environments. Processor power models are 
being built to help plan and optimize for reduced power consumption.

AI Integration Efforts in Flight and Under Exploration 

•	 Fine-tuned custom LLMs to analyze logs.

•	 MLOps pipeline to capture and maintain data provenance.

•	 AI semantic conventions to CNCF projects like OpenTelemetry.101 

•	 AI-powered development environments (IDEs) are used to develop and deploy AI applications.

We expect to report on advances in this space in the not-too-distant future.
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CONCLUSION

APPENDIX

Combining Artificial Intelligence (AI) and Cloud Native (CN) technologies offers an excellent opportunity 
for organizations to develop unprecedented capabilities. With the scalability, resilience, and ease of use 
of Cloud Native infrastructure, AI models can be trained and deployed more efficiently and at a grander 
scale. This white paper delves into the intersection of these two areas, discussing the current state of 
play, the challenges, the opportunities, and potential solutions for organizations to take advantage of this 
potent combination.

While several challenges remain, including managing resource demands for complex AI workloads, 
ensuring reproducibility and interpretability of AI models, and simplifying user experience for non-
technical practitioners, the Cloud Native ecosystem is continually evolving to address these concerns. 
Projects like Kubeflow, Ray, and KubeRay pave the way for a more unified and user-friendly experience 
for running AI workloads in the cloud. Additionally, ongoing research into GPU scheduling, vector 
databases, and sustainability offers promising solutions for overcoming limitations.

As AI and Cloud Native technologies mature, organizations embracing this synergy will be well-
positioned to unlock significant competitive advantages. The possibilities are endless, from automating 
complex tasks and analyzing vast datasets to generating creative content and personalizing user 
experiences. By investing in the right talent, tools, and infrastructure, organizations can leverage 
the power of AI and Cloud Native technologies to drive innovation, optimize operations, and deliver 
exceptional customer experiences.

This paper brought to you by the CNCF AI Working Group.
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Glossary

AI Practitioners

In the context of this paper, it refers to (not limited to) ML Engineers, Data Scientists, Data Engineers, 
roles whose primary responsibilities include manipulating relevant data, creating, and optimizing 
machine learning models.

Developers

In the context of this paper, it refers to (not limited to), Software Engineers, Frontend Engineers, 
Backend Engineers, Full Stack Engineers, Software Architects, and Software Testers. The roles whose 
primary responsibility include writing and testing software including user interfaces, microservices, and 
backend software.
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Deployers

In the context of this paper, it refers to (not limited to), DevOps Engineers, Site Reliability Engineers, 
Infrastructure Engineers, Infrastructure Architects, Application Administrators, Cluster Administrators. 
The roles whose primary responsibility include deploying software and cloud infrastructure to multiple 
environments including development, staging and production. 

DRA

DRA stands for Dynamic Resource Allocation. It is an API abstraction of general resource claim and 
provisioning for Pods, allowing 3rd party vendors to provide HW/SW resources on demand without 
having to rewrite the Kubernetes core API.

LLM

“LLM” stands for “Large Language Model.” Large language models are artificial intelligence models 
trained on vast amounts of text data to understand and generate human-like text. LLMs are a subset of 
machine learning models specifically designed for natural language processing (NLP) tasks.

LLMOps

LLMOps, which stands for Large Language Model Operations, encompasses the operational aspects 
tailored specifically for Large Language Models (LLMs). In essence, LLMOps is the adaptation of MLOps 
principles and tools to the unique requirements of LLM-powered applications, encompassing their entire 
lifecycle from development to deployment and maintenance.

MIG

Multi-Instance GPU technology is an innovation that allows a single physical GPU (Graphics Processing 
Unit) to be partitioned into multiple more minor instances, each operating as an independent GPU with 
its own resources and capabilities. This technology enhances GPU utilization and flexibility in data center 
and cloud computing environments.

MLOps

MLOps, short for machine learning operations, refers to the practices, methodologies, and tools used 
to streamline and automate machine learning models’ deployment, monitoring, and management in 
production environments. MLOps aims to bridge the gap between machine learning development 
and operations, ensuring that ML models are deployed efficiently, reliably, and at scale. It involves a 
combination of software engineering principles, DevOps practices, and specialized tools to automate the 
end-to-end ML lifecycle, including data preparation, model training, model deployment, monitoring, and 
maintenance. MLOps helps organizations accelerate their ML projects, improve model performance, and 
maintain consistency and reliability across the ML pipeline.

MPS

MPS stands for Multi-Process Service in the context of GPU computing. MPS technology allows multiple 
GPU-accelerated applications or processes to share a single physical GPU while maintaining isolation and 
efficient resource utilization.

RAG
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In the context of AI, RAG stands for “Retrieval-Augmented Generation.” It’s a model architecture 
combining retrieval-based and generative models to produce text. RAG’s generation process is 
augmented with a retrieval mechanism that helps the model access relevant information from an 
extensive database or knowledge base. This retrieval component allows the model to incorporate 
external knowledge into the generation process, improving the quality and relevance of the generated 
text.

vGPU

vGPU, or Virtual Graphics Processing Unit, technology enables multiple virtual machines (VMs) to share 
a single physical GPU (Graphics Processing Unit). This technology efficiently utilizes GPU resources in 
virtualized environments such as cloud computing, data centers, and virtual desktop infrastructure (VDI).
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